Large Eddy Simulations of Flow Around a Cylinder with Uncertain Wall Heating

نویسندگان

  • Gianluca Iaccarino
  • Paul Constantine
چکیده

Numerical simulations of the turbulent flow and heat transfer around an array of cylinder are carried out at Reynolds number ReD = 3, 900. The wall heat flux is assumed to be uncertain and characterized by highest variance in the stagnation point region. Simulations are carried out using a novel uncertainty propagation scheme, the hybrid stochastic projection method. This technique combines the accuracy and convergence properties of intrusive stochastic Galerkin methods with the non-intrusive nature of stochastic collocation. Reynolds averaged and Large Eddy simulations are used to estimate the variability induced by the uncertain boundary conditions; the comparison between the two approaches provides an indirect estimate of the epistemic uncertainty associated to the simplification introduced by the turbulence modeling. The sensitivity of the predictions to the assumed wall heating variability is also presented and shows that the expectation and variance of the temperature converge more slowly when LES is considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer

Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...

متن کامل

A Numerical Study on the Aeroacoustic Radiation from a Finite Length Rotating Cylinder

Rotating cylinders have wide applications in different areas, especially the aerodynamic area. However, the acoustic behaviors of these components have not been widely studied. The generating noise from a spinning cylinder is mainly due to the detached vortices from the leeward of the body. In this study, the large eddy simulation technique is used to simulate the flow field over a three-dimens...

متن کامل

Numerical Study of Reynolds Number Effects on Flow over a Wall-Mounted Cube in a Channel Using LES

Turbulent flow over wall-mounted cube in a channel was investigated numerically using Large Eddy Simulation. The Selective Structure Function model was used to determine eddy viscosity that appeared in the subgrid scale stress terms in momentum equations. Studies were carried out for the flows with Reynolds number ranging from 1000 to 40000. To evaluate the computational results, data was compa...

متن کامل

EFFECT OF TIME-DEPENDENT TRANSPIRATION ON AXISYMMETRIC STAGNATION-POINT FLOW AND HEATTRANSFER OF A VISCOUS FLUID ON A MOVING CIRCULAR CYLINDER

Effect of time dependent normal transpiration on the problem of unsteady viscous flow and heat transfer in the vicinity of an axisymmetric stagnation point of an infinite circular cylinder moving simultaneously with time-depended angular and axial velocities and with time-dependent wall temperature or wall heat flux are investigated. The impinging free stream is steady with a strain rate . A re...

متن کامل

Aerodynamic Noise Computation of the Flow Field around NACA 0012 Airfoil Using Large Eddy Simulation and Acoustic Analogy

The current study presents the results of the aerodynamic noise prediction of the flow field around a NACA 0012 airfoil at a chord-based Reynolds number of 100,000 and at 8.4 degree angle of attack. An incompressible Large Eddy Simulation (LES) turbulence model is applied to obtain the instantaneous turbulent flow field. The noise prediction is performed by the Ffowcs Williams and Hawkings (FW-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009